Mathematics

Seldom Bucket

Well-Known Member
Joined
Mar 15, 2020
Messages
3,945
Location
Midgard
To Win This Numbers Game, Learn to Avoid Math Patterns

Here’s a simple number game to play on a rainy day, or while sheltering in place. You and I take turns crossing out numbers from the list {1, 2, 3, …, 9}. The winner is the last person to cross out a number without making three crossed-out numbers in a row. Let’s play! You can go first.

Suppose after four moves we’ve crossed out these numbers:

1 2 3 4 5 6 7 8 9

It’s your turn again. Notice if you cross out 4 you lose, as that makes three in a row: 3-4-5. You also lose if you cross out 7, as that makes 7-8-9. Your only safe plays are to cross out 1, 2 or 6. But no matter which number you choose, I can cross out one of the others and win by leaving you with no safe moves.
 

Seldom Bucket

Well-Known Member
Joined
Mar 15, 2020
Messages
3,945
Location
Midgard
‘Amazing’ Math Bridge Extended Beyond Fermat’s Last Theorem

When Andrew Wiles proved Fermat’s Last Theorem in the early 1990s, his proof was hailed as a monumental step forward not just for mathematicians but for all of humanity. The theorem is simplicity itself — it posits that xn + yn = zn has no positive whole-number solutions when n is greater than 2. Yet this simple claim tantalized legions of would-be provers for more than 350 years, ever since the French mathematician Pierre de Fermat jotted it down in 1637 in the margin of a copy of Diophantus’ Arithmetica. Fermat, notoriously, wrote that he had discovered “a truly marvelous proof, which this margin is too narrow to contain.” For centuries, professional mathematicians and amateur enthusiasts sought Fermat’s proof — or any proof at all.
 

The_Mowgs

Active Member
Joined
Mar 18, 2020
Messages
132
@mushroom
f859f917bd17f566c717ad0fc579ad0c.jpg
 
  • Wow
Reactions: Y2K

Seldom Bucket

Well-Known Member
Joined
Mar 15, 2020
Messages
3,945
Location
Midgard
In Mathematics, It Often Takes a Good Map to Find Answers
In the late 15th century, Leonardo da Vinci sketched plans for a flying machine that resembled a modern-day helicopter. Today, da Vinci’s “aerial screw” appears fanciful and poignantly ahead of its time. While the device itself was too heavy to fly, the ideas behind it were sound, and those same ideas eventually allowed modern helicopters to take flight. Technology just had to advance over many centuries first.

Mathematicians are often in the same situation as da Vinci: They have big dreams, but mathematical knowledge may not be advanced enough to fulfill them.

Depending on who you ask, for example, present-day mathematicians have nearly as much chance of solving the Riemann hypothesis — the most famous unsolved problem in math — as da Vinci had of building a machine that could actually fly.
 
Top